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Structural, Electronic and Elastic Properties of 
LiXN (X = Be, Mg): A First Principles Study 
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Abstract— The structural, electronic and elastic properties of LiXN (X = Be, Mg) are investigated by first principles calculation based on 
density functional theory using Vienna ab-initio simulation package. Electronic structure reveals that these alloys exhibit semiconducting 
behavior and α – phase is the most stable phase. The calculated elastic constants indicate that these materials are mechanically stable at 
ambient condition. 
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1 INTRODUCTION                                                                     

YDROGEN has been identified as one of the most prom-
ising clean fuel for the future. Perhaps the greater tech-

nical barrier to its implementation is hydrogen storage. For 
on-board vehicular hydrogen storage, advanced metal hy-
drides that are light weight, low cost and high in hydrogen 
density are necessary [1,2]. Complex hydrides such as amides 
[3-8], Magnesium based hydrides [9-12] and mixed complex 
hydrides [13-16] have been reported to have good hydrogen 
storage capabilities. Recently, in a comprehensive study of 
destabilization reactions, Alpati et al.predicted that a 1:1 mix-
ture of lithium amide and magnesium hydride, LiMgN, could 
release 8.2 wt % of H2 [17, 18]. The band structure modifica-
tion of diamond and zinc blende semiconductors has been 
tested theoretically and widely by insertion of small atoms 
such as H and He at their tetrahedral interstitial sites, which 
has been proposed as filled tetrahedral semiconductor   [19, 
20], such as LiBIICV (BII = Zn, Mg; CV = N, P, As). Recently, Ku-
riyama et al. [21] have synthesized a new filled tetrahedral 
semiconductor LiMgN by direct reaction between N2 and 
LiMg alloy at around 8000C for 8h and determined the energy 
band gap value as 3.2 eV.  Bailey et al. performed further stud-
ies, by means of PND, reporting that LiMgN under goes a 
structural transition at temperature above 673 K resulting in 
the formation of a cubic anti – fluorite structure (space group 
Fm – 3m) [22].  

In this paper, structural stability, electronic structure and 
elastic properties of LiXN (X = Be, Mg) under ambient         
condition are analyzed by performing total energy calculation 

with zincblende structure using first principles calculation 
based on density functional theory as implemented in Vienna 
ab – initio simulation package. 

2 COMPUTATIONAL DETAILS 
The total energy calculations are performed in the frame 

work of density functional theory using the generalized gradi-
ent approximation (GGA-PBE) [23-25] as implemented in the 
VASP code [26-28]. Ground-state geometries are determined 
by minimizing stresses and Hellman-Feynman forces using 
the conjugate-gradient algorithm with force convergence less 
than 10-3eV/Å. Birllouin zone integration is performed with a 
Gaussian broadening of 0.1 eV during all relaxations. The cut-
off energy for plane waves in our calculation is 600 eV. The 
electronic configuration of Li, Be, Mg and N atoms are 1s1, 2s1 
(Z=2), 1s2, 2s2 (Z=4), [Ne] 3s2, (Z=12) and 1s2, 2s2, 2p3 (Z=7). The 
valence electron configurations are Li 1s1, 2s1, Be 1s2, 2s2, Mg 
3s2 and N 2s2, 2p3 atoms. Birllouin-zone integrations are per-
formed on the Monkhorst-Pack K-point mesh [29] with a grid 
size of 11x11x11 for structural optimization and total energy 
calculation. Iterative procedure is stopped when the change in 
total energy between successive ionic relaxation steps is less 
than 1 meV/cell. The unit cell structure of the various phases 
of LiXN (X = Be, Mg) are given in Fig. 1.  

3 Results and discussion 
3.1 Structural stabilities and ground state properites 

The structural stability of LiXN (X = Be, Mg) are analyzed 
by calculating the total energy using VASP code. The calculat-
ed total energy as a function of reduced volume for α, β and γ 
phases of LiXN (X = Be, Mg) are plotted in Fig. 2. From Fig. 2, 
it is clear that the α – phase is more stable than β and                
γ – phases. The calculated ground state properties like cell 
volume V0 (Å3), lattice constant a (Å), valance electron density 
ρ (electrons/ Å3), Bulk modulus B0 (Gpa) and its derivative B0’, 
Band gap Eg (eV), the band gap volume av and pressure de-
formation potentials ap of LiXN (X = Be, Mg) are listed in    

H 

———————————————— 
• a Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu-625019, 

India. 
• bDepartment of Physics, KamarajCollege, Tuticorin, Tamil Nadu-628003, 

India. 
• cDepartment of physics and Nanotechnology, SRM University, Chennai, Ta-

milnadu-603203, India. 
• Corresponding author; e-mail: rajeswarapalanichamy@gmail.com 

 

 

 

 

 
                            
      

IJSER

http://www.ijser.org/
mailto:rajeswarapalanichamy@gmail.com


International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014                                                             162 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org  

Table 1. The  lattice constants and Bulk modulus of LiBeN and 
LiMgN are in good agreement with the experimentally   
measured values and other theoretical results [30-33]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2 Electronic Structure 
The electronic density of states (DOS) and band structure 

of LiXN (X = Be, Mg) alloys are shown in Fig 3. It is seen that 
the N -2p states are localized between 0 eV and 4 eV with mix-
ing of some Mg 3s and Li s states. The high peak due to 2s 
state electron of N atom lies at the energy range of -10 eV. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

3.3 Elastic properties 
Elastic constants are the measure of the resistance of a crys-

tal to an externally applied stress. For small strains Hooke’s 
law is valid and the crystal energy E is a quadratic function of 
strain [34]. Thus, to obtain the total minimum   energy for cal-
culating the elastic constants to second order, a crystal is 
strained and all the internal parameters are relaxed. Consider 
a symmetric 3 x 3 non-rotating strain tensor ε which has ma-
trix elements  Eij (i, j = 1, 2 and 3) defined by Eq.1. 

 
 
                                                                                          

 
 
 
 
such a strain transforms the three lattice vectors to 
 
       
where I is defined by its elements, Iij =1 for i = j and 0 for i ≠ j 
and K = 1,2 and 3; K’ = 1, 2 and 3. Each lattice vector ak or ak’ is 
a 3x1 matrix. The change in total energy due to the above 
strain (1) is  

  TABLE 1 
GROUND STATE PROPERTIES 

               LiBeN                                    LiMgN                           

      α           β              γ             α              β             γ   

V0     20.72     20.44       21.19      31.05       31.65       29.43                
a       4.3599   4.3402    4.3929     4.9891     5.0211    4.9012 
         4.366f    4.338f      4.398f      4.970c      5.067e     4.866e 

                                                                                     4.593d  
                                                                                     4.955e              
Ef     5.5805    5.9140    5.6850     4.4722     4.5558    
5.5967       
ρ      0.386     0.391      0.378        0.258       0.253      0.272         
B0     159,       147         131          102          89           84 
         153.6f    143.9f     125.4f       99e           77e          97e                                                  
B0’     3.834     3.832      3.837       3.878       3.879      3.873 
         3.8f        3.9f         3.8f   
Eg     5.57       6.33        4.23         3.09         3.15        2.94 
         5.05f      6.49f                       3.2c          2.40c       2.39c 
         5.71f      7.00f                       2.46c 
                                                      3.3e   

av      -9.69      -9.42      -12.91       -6.63       -8.34       -8.27 
                                                     -5.64c    

aP       6.10       6.41       9.85          6.50         9.37         9.84 
                                                       5.70c  

aReference [30], c Reference [21],  d Reference [31], eReference [32],                
f R f  [33] 
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Fig.2 The total energy as a function of reduced volume for LiXN (X = 
Be, Mg)  
 
 

 
Fig.3 Total Density of states of LiXN (X = Be, Mg)  
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Fig.1 Unit cell structures of the considered phases of (a) α, (b) β and 
(c) γ phases of LiXN (X = Be, Mg)  
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where V0 is the volume of the unstrained lattice, E0 is the total 
minimum energy at this unstrained volume of the crystal, 
P(V0) is the pressure of the unstrained lattice, and V is the new 
volume of the lattice due to strain in Eq. (1). The elasticity ten-
sor has three independent components (C11, C12, C44) for cubic 
crystals. A proper choice of the set of strains {ei, i = 1, 2,..., 6}, 
in Eq.(3)  leads to a parabolic relationship between           
ΔE/V0 (ΔE ≡ E−E0) and the chosen strain. From the calculated 
Cij results, the bulk modulus and shear modulus for the cubic 
crystal is calculated using the Voigt-Reuss- Hill (VRH) averag-
ing scheme [35-37] and averaged compressibility in the form         
β = 1/B. The strain energy 1/2Cijeiej of a given crystal in       
Eq. (3) must always be positive for all possible values of the 
set {ei}; otherwise the crystal would be mechanically unstable. 
The calculated elastic constants Cij (GPa), Young’s modulus            
Y (GPa), Shear modulus G (GPa), Poisson’s ratio (ν), elastic 
anaisotropy factor A, B/G ratio, G/B ratio, Hardness parame-
ter H, averaged compressibility β and  Lame’s constants μ, λ 

for LiXN (X = Be, Mg) alloys are given in Table 2. 
For a stable cubic structure, the three independent elastic con-
stants Cij (C11, C12, and C44) should satisfy the Born-Huang cri-
teria [37]. 
C44 > 0, C11 > |C12|, C11 + 2 C12 > 0 
Clearly, the calculated elastic constants for LiBeN and LiMgN 
are satisfying Born-Huang criteria, suggesting that they are 
mechanically stable. At normal pressure LiXN (X = Be, Mg) are 
mechanically stable due to positive C44. 
One of the most important parameters for estimating mechan-
ical properties of compounds is elastic anaisotropy of crystal. 
It has an important implication in engineering science since it 
is highly correlated with the possibility to induce microcracks 
in materials [38]. The elastic anaisotropy behaviour of a crystal 

can be measured by the Zener ratio 
 
 
 
 
The value of A = 1, represents completely elastic isotropy, 
while values smaller or larger than 1 measures the degree of 
elastic anisotropy. From the table 3, it is seen that LiBeN and 
LiMgN are elastically anisotropic at ambient condition. 

The Young’s modulus (Y) and Lame constants (λ, μ) are of-
ten measured for polycrystalline materials when investigating 
their hardness. Physically, the first Lame constant (λ) repre-
sents the compressibility of the material, while the second 
Lame constant (μ) reflects its shear stiffness. These quantities 
are calculated using the following relations:  
 
 
 
 
 
 
 
Bulk modulus (B0) and shear modulus (G) can measure the 
resistance of a material to volume and shape change respec-
tively. The results in Table. 2, indicate that these alloys have 
seemed to be more inclined to resist with volume change than 
shape change. Young’s modulus is often used to provide a 
measure of stiffness of a solid, i.e., larger the value of Young’s 
modulus, stiffer is the material. From Table.3, it is seen that α – 
phase of LiBeN and β- phase of LiMgN are stiffer than the 
other considerd phases.Poisson’s ratio is associated with the 
volume change during uniaxial deformation, which is ex-
pressed as    
 
 
 
During elastic deformation no volume change occurs, If           
v = 0.5, the material is incompressible. The low v value means 
that a large volume change is associated with its deformation. 
In addition, Poisson’s ratio provides more information about 
the characteristics of the bonding forces than any of the other 
elastic constants. Among these alloys, the Poisson’s ratio of      
α – LiXN is lower than γ – LiXN (X = Be, Mg). The ratio of 
bulk modulus to shear modulus is used to estimate the brittle 
or ductile behaviour of materials. A high B/G value is associat-
ed with ductility, while a low B/G value corresponds to brittle 
nature. The critical value which separates ductile and brittle 
materials is about 1.75. From Table 3, it is found that α – LiXN 
(X = Be, Mg) are brittle. Moreover, for covalent and ionic mate-
rials the typical relations between bulk and shear moduli are 
G ≈ 1.1B and G ≈ 0.8B, respectively [39]. Since the present    
values are near to 0.8, this result strongly supports the ionic 
contribution to inter atomic bonding. 

  TABLE 2 
ELASTIC PROPERTIES 

                LiBeN                                    LiMgN                           
       α             β           γ               α            β           γ   

C11      290.91   172.87    152.37      242.04    171.43    118.12                
C12      92.99     133.82    120.70      31.42      47.86      66.54 
C44      88.45     19.08       69.87       84.56      40.28      21.54 

Y        245.87    56.11      45.68       235.04    276.83    70.86 
G        98.96     19.53      15.84       105.31     61.79     25.78       
ν        0.2422    0.4363    0.4420     0.1149     0.2182   0.3624      
A       0.8937    0.9772     4.4123    0.6184     0.3674   0.2833         
B/G  1.607       7.527      1.875       0.969       1.440    3.258                                                  
G/B  0.622      0.130       0.533      1.022       0.694     0.307 
H       17           0.83         0.62        27.06       21.35     2.15 
β        0.006      0.007      0.008       0.009       0.011     0.012 
μ        122         28           22            131          169        48 
λ        92.98      133.78    120.71     15.73       43.99     33.91 
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The investigation of the stiffness can be completed by provid-
ing the microhardness parameter [40], given by the following 
relation: 
 
 
The calculated H values are 27.06 Gpa, 21.35 Gpa, 2.15 Gpa for 
α – LiMgN, β – LiMgN and γ – LiMgN and 17 Gpa, 0.83 Gpa 
and 0.62 Gpa for α – LiBeN, β – LiBeN and γ – LiBeN. This 
indicates that both LiMgN and LiBeN are hard materials at 
ambient condition.  

4 CONCLUSION 
In conclusion, first principles calculations have been per-

formed using Vienna ab-initio simulation package to investi-
gate the electronic and mechanical properties of                   
LiXN (X = Be, Mg)  with possible structures. The calculated 
ground state properties are in good agreement with the avail-
able results. Our results suggest that α-phase is the most stable 
phase at ambient condition. Electronic structure reveals that 
these materials exhibit semiconducting behavior.  The calcu-
lated elastic constants obey the necessary mechanical stability 
condition suggesting that these alloys are mechanically stable 
at ambient condition 
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